hydroperoxytetrahydrofuran. Again a yellow-green compound was obtained, which did not contain peroxides. However, addition of 30% H₂O₂ to a slurry of the THF cocondensate in THF again yielded a yellow solution to which addition of 18-crown-6 caused immediate precipitation of 3.

The above results suggest the following interpretation. MoO₃ behaves as a free radical initiator for THF, leading to formation of α -hydroperoxytetrahydrofuran in the presence of O₂. Because these solutions are acidic, pH ca. 2, the tetrahydrofuran-substituted peroxide is in equilibrium with H_2O_2 as shown in eq 6. The peroxo

$$\bigcirc -00H + H^+ \iff \bigcirc \bigcirc^+ + H_2O_2 \qquad (6)$$

ligand addition to the Mo then occurs through the reaction of the H_2O_2 with the molybdenum oxide species in solution.

The counterpart to eq 6 for tert-butylhydroperoxide is eq 7.

$$(CH_3)_3COOH + H^+ \rightleftharpoons (CH_3)_3C^+ + H_2O_2$$
(7)

That 3 does not occur upon the addition of tert-butylhydroperoxide implies the equilibrium for eq 7 must lie far to the left under our reaction conditions. This is apparently due to the instability of the tert-butyl cation under these conditions. Therefore in this case, without in situ H_2O_2 formation, 3 is not observed.

While the synthesis of a number of diperoxomolybdenum(VI) complexes have been reported by reacting oxomolybdenum(VI) complexes with H_2O_2 ,²⁵ we are aware of only one report of a diperoxomolybdenum(VI) complex synthesized without the addition of H_2O_2 . This is the formation of diperoxo(tetraphenylporphinato)molybdenum(VI), (O₂)₂Mo(TPP), from the reaction of cis-dioxo(tetraphenylporphinato)molybdenum(VI), O₂Mo(T-PP), with 2-propanol recently reported by Ledon, et al.²⁶ In his report, Ledon proposes that O₂Mo(TPP) abstracts a hydrogen atom from the alcohol to form a free radical. The alcohol free radical interacts with dioxygen to form the alkylperoxide, which is in equilibrium with H_2O_2 . Again, in situ H_2O_2 formation leads to a Mo peroxo complex.

Acknowledgment. The authors thank Robert Brown at the Albany Bureau of Mines for his assistance with the thermogravimetric analyses and Robert McCune at the Albany Bureau of Mines for his assistance with the X-ray powder diffraction analyses. Thanks are extended to Dr. A. B. Anderson for providing a copy of ref 16 prior to publication.

- (25) Stiefel, Edward I. In "Progress in Inorganic Chemistry"; Lippard, Steven J., Ed.; Wiley-Interscience: New York, 1977; Vol. 22, p 1 and references therein.
- (26)Ledon, H.; Varescon, F.; Malinski, T.; Kadish, K. M. Inorg. Chem. 1984, 23, 261.

Contribution from Inorganic Chemistry, Faculty of Science, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, The Netherlands, and the Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455

Reactions of Gold(I) Compounds with Carbon Monoxide To Form Gold Clusters and Fulminates

W. BOS,*[†] J. J. BOUR,[†] J. J. STEGGERDA,[†] and L. H. PIGNOLET[‡]

Received April 2, 1985

Au(I) compounds of the type AuPPh₃X, where X is a weak coordinated ligand like NO₃⁻, ClO₄⁻, BF₄⁻, or OAc⁻, react with carbon monoxide to form gold clusters of the type Au₉(PPh₃)₈X₃. The carbon monoxide is transformed to CO₂, probably via initial binding to gold. A precursor of the gold clusters could be detected in a AuPPh₃NO₃ matrix. When CH₂Cl₂ is used as a solvent, carbon monoxide and AuPPh₃NO₃ or Au₉(PPh₃)³⁺ give a complicated reaction resulting in the formation of fulminates. In this way AuPPh₃CNO and Au₁₁(PPh₃)₈(CNO)₂⁺ are synthesized. Key in the formation of fulminate is the reaction of a reactive intermediate, probably AuPPh₃NO, with CH₂Cl₂. ¹³CO-labeling experiments confirm the origin of the carbon in the fulminate to be CH₂Cl₂.

Introduction

Recently we described reactions of isocyanides with gold clusters, resulting in the synthesis of $Au_9(PPh_3)_6(i-PrNC)_2^{3+}$, the first gold cluster containing isocyanide ligands.¹ Since carbon monoxide and isocyanide are quite similar electronically, we decided to investigate reactions of gold(I) compounds and gold clusters with CO.

Only two gold-CO compounds are known today, Au(CO)Cl² and $Au_2(CO)Cl_4$ ³ but they are unstable in the presence of moisture even at room temperature. As this paper will show, weak coordination of CO to gold is responsible for the rapid reduction of gold compounds to gold clusters. Gold clusters are normally synthesized by using NaBH₄ as reducing agent⁴ or by means of gold evaporation into a phosphine solution.⁵ The introduction of CO as a reducing agent is very interesting in this respect, since CO has been shown to be very mild and selective.

During reduction experiments with CO we discovered the formation of gold-fulminato (Au-CNO) compounds. The formation of the fulminate is due to a complicated reaction involving CH₂Cl₂, which was used as solvent. Gold fulminate compounds are very rare. Two types are known, namely the bis(fulminato) complex Au(CNO) $_2^{-6,7}$ and its oxidized form Au(CNO) $_2X_2^{-1}$ (X = Br, I).⁸ Na[Au(CNO)₂] is obtained by reacting AuCl₃ with ethanol and nitric acid, analogous to the preparation of mercury fulminates.

Experimental Section

Instrumentation. C, H, and N analyses were carried out in the microanalytical department of the University of Nijmegen. The other analyses were measured by Dr. A. Bernhardt, Elbach über Engelskirchen, West Germany. Molecular weights were determined by using a Knauer

- (1) Bos, W.; Bour, J. J.; van der Velden, J. W. A.; Steggerda, J. J.; Ca-
- salnuovo, A. L.; Pignolet, L. H. J. Organomet. Chem. 1983, 253, C64. Kharach, M. S.; Isbell, H. S. J. Am. Chem. Soc. 1930, 52, 2919.
- Dell'Amico, D. B.; Calderazzo, F.; Marchetti, F. J. Chem. Soc., Dalton Trans. 1976, 1829. Dell'Amico, D. B.; Calderazzo, F.; Marchetti, F.;
- Merlino, S. J. Chem. Soc., Dalton Trans. 1982, 2257.
 (4) Bellon, P. L.; Cariatti, F.; Manassero, M.; Naldini, L.; Sansoni, M. J. Chem. Soc., Chem. Commun. 1971, 1423. Cariatti, F.; Naldini, L. J. Chem. Soc., Dalton Trans. 1972, 2286.
- (5) Vollenbroek, F. A.; Bouten, P. C. P.; Trooster, J. M.; van den Berg, J. P.; Bour, J. J. Inorg. Chem. 1978, 17, 1345.
- Wöhler, L.; Berthmann, A. Chem. Ber. 1929, 62, 2748.
- Nagel, U.; Peters, K.; v. Schnering, H. G.; Beck, W. J. Organomet. (7) Chem. 1980, 185, 427
- (8) Beck, W.; Swoboda, P.; Feldl, K.; Schuierer, E. Chem. Ber. 1970, 103, 3591.

University of Nijmegen

[‡]University of Minnesota.

Reactions of Au(I) Compounds with CO

11.00 vapor pressure osmometer in acetone at 37 °C. Electrical conductivity measurements were performed with a Metrohm Konduktoskop using a Philips PR 9510/00 conductivity cell at 25 °C. ³¹P NMR spectra were recorded on a Varian XL 100 FT at 40.5 MHz, infrared spectra on a Perkin-Elmer 283, and mass spectra on a VG 7070 E spectrometer. All materials were of reagent quality. $NH_4^{15}NO_3$ was obtained from Duphar, ¹³CO from Stohler. $Na[Au(CNO)_2]$ was prepared according to the literature.⁶

General Safety Note. Fulminates of metal complexes can be explosive. Syntheses involving impurities or syntheses carried out on a scale larger than reported here should be treated with extreme caution.

Preparation of AuPPh₃X (X = NO₂, NCO). The general procedure for the synthesis of AuPPh₃X is as follows: A suitable salt of the ligand X is dissolved in methanol in large excess (2 g of NaNO₂ in 400 mL of MeOH; 1.2 g of KOCN in 200 mL of MeOH). To this is added a solution of 500 mg (0.96 mmol) of AuPPh₃NO₃ in 200 mL of MeOH. After the mixture is allowed to stand for 1 h, a double volume of water is added, upon which the product precipitates. The yields are quantitative.

AuPPh₃NCO crystallizes as white needles and can be purified by slow diffusion of hexane into a CH₂Cl₂ solution. Anal. Calcd for C₁₉H₁₅-AuPNO ($M_r = 501.273$): C, 45.5; H, 3.0; N, 2.8. Found: C, 45.6; H, 3.0; n, 2.8. ³¹P[¹H] NMR (CH₂Cl₂): a broad singlet (line width 20 Hz, room temperature) at 29.04 ppm downfield relative to TMP. IR (CsI pellet): 2204 (broad, very strong), 2146 (sharp, strong), 385 cm⁻¹ (broad, medium), and peaks originating from PPh₃. In CH₂Cl₂ solution, only one IR peak at 2210 cm⁻¹ (broad, very strong) is observed. The IR spectrum is consistent with literature values.^{9,10} Melting point: 202 °C. Peak-matching of the parent mass peak: calcd, *m/e* 501.0557; found, *m/e* 501.0552.

AuPPh₃NO₂. The white powder obtained from the reaction is recrystallized by slow diffusion of hexane into a CH₂Cl₂ solution, resulting in colorless rectangular crystals. Anal. Calcd for C₁₈H₁₅AuPNO (M_r = 505.269): C, 42.8; H, 3.0; N, 2.8. Found: C, 43.2; H, 3.0; N, 2.7. ³¹P[¹H] NMR (CH₂Cl₂): 24.54 ppm (singlet width 3 Hz) downfield relative to TMP. IR (CsI pellet): 1230 (broad, strong), 1040 (broad, strong), 370 cm⁻¹ (broad, medium), and bands originating from PPh₃. The nitrite slowly decomposes under the influence of light and increased temperatures.

AuPPh₃¹⁵NO₃. The same procedure is used as with the isocyanate and nitrite salts, using an excess of 5 equiv of $NH_4^{15}NO_3$. The resulting product is not purified further. In the infrared spectrum the nitrate is observed at 1495, 1340, and 1250 cm⁻¹, which are about 20 cm⁻¹ lower than the bands of ¹⁴NO₃.

Preparation of AuPPh₃CNO. (1) From AuPPh₃NO₃. A 200-mg (0.38-mmol) sample of AuPPh₃NO₃ is dissolved in 20 mL of CH_2Cl_2 . About 250 mL of CO gas is passed through the solution and the reaction vessel sealed. After being stirred for 1 h, the reaction mixture contains 10–38 mg of AuPPh₃CNO and 160–170 mg of AuPPh₃Cl. This yield can be increased by converting the AuPPh₃Cl back to AuPPh₃NO₃ by treatment of the product with 2 equiv of AgNO₃ in methanol, as with the synthesis of AuPPh₃NO₃.⁴ After AgCl and excess AgNO₃ are filtered off, the crude mixture is redissolved in CH₂Cl₂ and CO is passed through the solution again. In this way the reaction with CO is performed in four cycles. The crude reaction product is filtered off over silica gel with diethyl ether to remove small amounts of gold clusters and gold bis(phosphine). AuPPh₃CNO is isolated by chromatography over a silica gel column using toluene for the elution of AuPPh₃Cl oslowed by diethyl ether to recover all AuPPh₃CNO. Yield: 38%.

(2) From Au(PPh₃)₂NO₃ and Na[Au(CNO)₂]. A 19.8-mg (0.065mmol) sample of Na[Au(CNO)₂] is dissolved in 20 mL of DMF. To this is added slowly a solution of 51 mg (0.065 mmol) of Au(PPh₃)₂NO₃ in 20 mL of DMF with stirring. The white product is precipitated by adding water and is filtered off. Yield: 80%.

AuPPh₃CNO can be recrystallized by slow diffusion of hexane into a CH_2Cl_2 solution. Anal. Calcd for $C_{19}H_{15}AuPNO$ ($M_r = 501.273$): C, 45.5; H, 3.0; N, 2.8. Found: C, 45.5; H, 3.0; N, 2.8. ³¹Pl¹H] NMR (CH₂Cl₂): singlet (line width 6 Hz) at 36.25 ppm downfield relative to TMP. IR (CsI pellet): 2405 (sharp, weak), 2156 (sharp, very strong), 1208 (sharp, very strong), 332 cm⁻¹ (weak), and peaks originating from PPh₃. Melting point: 174–174.5 °C. Mass spectrum (FAB): m/e 501 (M⁺), 486, 459. Peakmatching: calcd, m/e 501.0557; found, m/e 501.0564. AuPPh₃CNO does not explode by stroke or heating.

Preparation of $Au_{11}(PPh_3)_8(CNO)_2NO_3$. (1) From $Au_9(PPh_3)_8$ -(NO₃)₃. A 250-mg (0.062-mmol) sample of $Au_9(PPh_3)_8(NO_3)_3$ is dissolved in 40 mL of CH₂Cl₂ and placed under 7 atm of CO pressure at Scheme I

$$\frac{co}{(x * BF_4^-, CIO_4^-, OAC^-)} PPh_3AuCO^+ + X^-$$

$$H_2O$$

$$"PPh_3AuH" + CO_2$$

room temperature in the dark for 3 weeks. During this time the color changes from red-brown to orange-red and some gold metal precipitates. After filtration and evaporation to dryness, the orange-red product is purified by chromatography over a Sephadex LH-60 gel filtration column using acetone as eluent. Yield calculated on gold: 18%.

(2) From $Au_8(PPh_3)_8(NO_3)_2$. A 110-mg (0.029-mmol) sample of $Au_8(PPh_3)_8(NO_3)_2$ is dissolved in 20 mL of DMF. To this is added slowly a solution of 8.8 mg (0.029 mmol) of Na[Au(CNO)_2] in DMF with stirring. After $1/_2$ h water is added and the precipitate filtered off by using Kieselguhr. The purification is carried out as described above. Yield calculated on gold: 24%.

(3) From $Au_8(PPh_3)_7(NO_3)_2$. A 50-mg (0.014-mmol) sample of $Au_8(PPh_3)_7(NO_3)_2$ and 15 mg (0.028 mmol) of $AuPPh_3CNO$ are dissolved in 2 mL of CH_2Cl_2 . After standing for 2 weeks in the dark, the reaction is complete. The purification can be conducted as above by chromatography over Sephadex LH-60 using acetone as eluent. Yield calculated on gold: 41%.

Au₁₁(PPh₃)₈(CNO)₂NO₃ can be recrystallized by slow diffusion of hexane into a CH₂Cl₂ solution, giving red parallelepiped crystals. Anal. Calcd from C₁₄₉H₁₂₀Au₁₁N₃O₅P₈ (M_r = 4411.02): C, 39.8; H, 2.7; N, 1.0; P, 5.6; O, 1.8; Au, 49.1. Found: C, 39.5; H, 2.7; N, 1.0; P, 5.6; Au, 49.4. The molecular weight determined in an acetone solution by using an osmometric pressure procedure is 4400, assuming a 1:1 electrolyte. The electrical conductivity measured in MeOH at 25 °C and 10⁻³ M dilution is A = 112 Ω^{-1} cm² mol⁻¹, consistent with a 1:1 electrolyte of mass 4400. ³¹P[¹H] NMR (CH₂Cl₂): sharp singlet at 42.53 ppm (line width 3 Hz) downfield relative to TMP. IR (CSI pellet: 2137 cm⁻¹ (broad, medium) and bands originating from PPh₃.

General Procedure for the Reduction of AuPPh₃NO₃ by CO or H₂. A 500-mg (0.96-mmol) sample of AuPPh₃NO₃ is dissolved in 250 mL of EtOH. During 1/2 h a slow stream of CO or H₂ is passed through the solution, after which the reaction vessel is sealed. An instantaneous brown color can be observed with CO, whereas H₂ reacts considerably slower. The CO reaction is complete after this time and can be worked up according to the normal synthesis of Au₉(PPh₃)₈(NO₃) using NaB-H₄⁴. The H₂ reaction mixture must be stirred for several days before workup. Yields calculated on gold: with CO, 45%; with H₂, 60%.

Results and Discussion

Reactions of AuPPh₃X with CO. Whether or not AuPPh₃X reacts with CO depends on the character of the ligand X. With strongly coordinating ligands like Cl⁻, SCN⁻, or CN⁻ no reaction can be observed in any solvent. With weakly coordinated ligands like NO₃⁻, ClO₄⁻, BF₄⁻, or OAc⁻, by using the solvents EtOH, THF, acetone, toluene, or diethyl ether, CO is capable of reducing the gold. The resulting products are the gold clusters Au₉(PPh₃)₈³⁺ and Au₈(PPh₃)₇²⁺ together with Au(PPh₃)₂⁺. The overall reaction can be written as in (1). The presence of Au₈(PPh₃)₇²⁺ is as

$$10AuPPh_3X + 3CO + 3H_2O \rightarrow$$

$$Au_9(PPh_3)_8X_3 + Au(PPh_3)_2X + 3CO_2 + 6HX$$

$$X = NO_{3}^{-}, BF_{4}^{-}, ClO_{4}^{-}, or OAc^{-}$$
 (1)

expected from the equilibrium¹¹ (2). Although the reaction must

$$Au_{9}(PPh_{3})_{8}^{3+} \rightleftharpoons Au_{8}(PPh_{3})_{7}^{2+} + AuPPh_{3}^{+}$$
(2)

be very complicated, it is very fast even at room temperature. In ethanol an instantaneous brown color can be observed as soon as the first CO bubble is passed through the solution. In solvents like toluene or diethyl ether, in which the gold clusters do not dissolve, a direct precipitation of $Au_9(PPh_3)_8^{3+}$ and $Au_8(PPh_3)_7^{2+}$ occurs.

The reduction to gold clusters could also be performed with H_2 , by using EtOH as a solvent. In this case the reaction is considerably slower, but a better yield of $Au_9(PPh_3)8^{3+}$ could be

⁽⁹⁾ Nichols, D. I.; Charleston, A. S. J. Chem. Soc. A 1969, 2581.

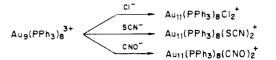
⁽¹⁰⁾ Beck, W.; Fehlhammer, W. P.; Pöllmann, P.; Schächl, H. Chem. Ber. 1969, 102, 1976.

⁽¹¹⁾ Steggerda, J. J.; Bour, J. J.; van der Velden, J. W. A. Recl.: J. R. Neth. Chem. Soc. 1982, 101, 164.

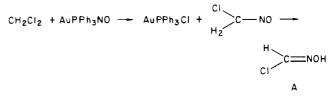
obtained. It seems likely that the reduction by CO occurs via coordination of CO to gold (Scheme I). This is supported by the fact that only gold triphenylphosphines with weakly coordinated ligands react with CO, since CO is believed to have only a minor interaction with gold.

There is an interesting difference in reaction speed between $AuPPh_3NO_3$ and $Au(PPh_3)_2NO_3$ reacting with CO. Where AuPPh₃NO₃ reacts rapidly, the bis(phosphine)gold compound shows almost no conversion over a long period of time. In the latter case no free bonding site on gold is present and therefore the addition of CO is blocked. When one uses AuPPh₃Cl or AuPPh₃CN, the same problem arises. Therefore only compounds with ligands that can be substituted easily will react with CO (or H_2). After addition of CO, a reaction with H_2O seems likely, resulting in oxygen transfer from H₂O to CO. When the experiment is carried out in absolutely dry solvents, no reaction is observed. Because of the generation of HX, the solution grows strongly acidic.

The mechanism for the formation of gold clusters is not well understood. We suggest that PPh₃Au or PPh₃AuH is intermediate. These highly reactive species congregate to form larger particles via $Au_2(PPh_3)_2$. The growth of the gold cluster is continued as long as the total number of PPh₃ ligands is less than 8. When this amount is reached, no more room is available for additional triphenylphosphines and the growth stops.¹¹


Powdered AuPPh₃NO₃ also reacts with carbon monoxide in the absence of solvent. The white starting product turns brown slowly while generating CO_2 . The resulting dark brown powder shows a single ESR signal with g = 2.004 and forms Au₉- $(PPh_3)_8(NO_3)_3$ and $Au_8(PPh_3)_7(NO_3)_2$ when dissolved in solvents like CH₂Cl₂, EtOH, toluene, THF, or acetone. One could look upon this substance as a reactive precurser to gold clusters. This is the first time such a species is obtained in a stable form, although still in a AuPPh₃NO₃ matrix. Further investigations in this direction are in progress and are needed to show more details about this species.

Reaction of AuPPh₃NO₃ with CO in CH₂Cl₂. The reaction with carbon monoxide was also carried out in CH₂Cl₂. From AuPPh₃X where $X = BF_4^-$ or ClO_4^- were formed gold clusters as in the other solvents. However, with AuPPh₃NO₃ no gold clusters were formed but instead more than 80% of the reaction product consisted of AuPPh₃Cl, showing that the solvent participated in the reaction. The reaction product also contained a small and variable amount (usually between 2 and 10%) of AuPPh₃CNO (Scheme V). Its yield could be increased by treatment of the crude mixture with AgNO₃ to convert the excess AuPPh₃Cl back to AuPPh₃NO₃. The mixture was again reacted with carbon monoxide. After four such cycles a yield of 38% AuPPh₃CNO could be obtained. The reaction only took place when traces of water were present. With carefully dried CH_2Cl_2 and starting material, either no reaction or a very incomplete reaction occurred. It is not known if water is needed in catalytic or stoichiometric quantities. To reveal the origin of the carbon atom in the fulminate ligand, the experiment was also performed by using ¹³CO. It showed that carbon-13 was present in ${}^{13}CO_2$ and not in the fulminate ligand. ${}^{15}N$ labeling of the nitrate resulted in the formation of ¹⁵N-labeled fulminate (eq 3).


$$AuPPh_{3}^{15}NO_{3} \xrightarrow{I_{3}^{13}CO} AuPPh_{3}Cl + AuPPh_{3}C^{15}NO + {}^{13}CO_{2}$$
(3)

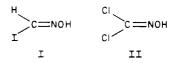
Reactions of $Au_9(PPh_3)_8(NO_3)_3$ with CO in CH₂Cl₂. In comparison with the reaction of AuPPh₃NO₃ with CO in CH₂Cl₂, reactions with $Au_9(PPh_3)_8(NO_3)_3^4$ were also carried out. In addition to AuPPh₃Cl and a very small amount (~1%) of AuPPh₃CNO, three gold clusters were formed, with ³¹P NMR signals at 50.12, 51.43, and 52.53 ppm downfield relative to TMP. Only the last signal persisted after a long reaction period. This gold cluster was identified as Au₁₁(PPh₃)₈(CNO)₂NO₃. The reactive species is probably AuPPh₃NO₃, present because of equilibrium 2. As its equilibrium concentration is small, the reaction will be slow, as observed. The generated AuPPh₃CNO

Scheme III

(eq 3) will react with $Au_8(PPh_3)_7(NO_3)_2$ to form $Au_{11}(PPh_3)_8$ - $(CNO)_2NO_3$. This was verified by reacting 2 equiv of AuPPh₃CNO with Au₈(PPh₃)₇(NO₃)₂ directly. Indeed, Au₁₁- $(PPh_3)_8(CNO)_2NO_3$ could be obtained in good yield (eq 4).

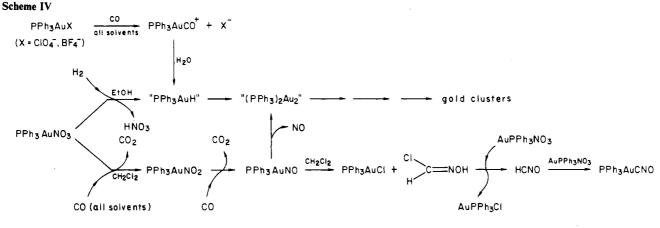
 $2AuPPh_{3}CNO + Au_{8}(PPh_{3})_{7}(NO_{3})_{2} \rightarrow$ $Au_{11}(PPh_{3})_{8}(CNO)_{2}NO_{3} (4)$

Vollenbroek et al.¹² showed that Au₁₁ clusters were formed by reacting Au₉(PPh₃)₈³⁺ with strongly coordinating anions like Cl⁻ and SCN⁻. In fact, we were able to carry out the same type of reaction using CNO⁻ (Scheme II).


Formation of the Fulminate. We suggest that the first step in the formation of the fulminate is the reduction of $AuPPh_3NO_3$ to AuPPh₃NO₂ by CO (eq 5). Two reasons for this assumption

$$AuPPh_{3}NO_{3} \xrightarrow{CO} AuPPh_{3}NO_{2} + CO_{2}$$
 (5)

can be put forward. First, the reaction to fulminates also takes place starting from AuPPh₃NO₂, and second, when the reaction is carried out by using H₂ instead of CO, AuPPh₃NO₂ is the ultimate product. The fact that AuPPh₃NO₂ by itself is not able to react with CH₂Cl₂ to produce fulminate (¹³CO experiments mentioned earlier showed that the carbon in the fulminate originates from CH_2Cl_2) shows that the reaction with CO does not stop at this point. No example for the reduction of nitrate to nitrite by CO is known to us from the literature. Thermodynamically this conversion is favorable. The further reduction from nitrite to nitrosyl by CO (eq 6) seems likely since many examples with


$$CO + AuPPh_3NO_2 \rightarrow AuPPh_3NO + CO_2$$
 (6)

various metals like Mn, Fe, Ru, Os, and Ni¹³⁻¹⁶ are known. The nitrosyl compound must be very reactive. Reaction with CH₂Cl₂ could lead to formoxime A (Scheme III) and AuPPh₃Cl. The hypothetical formoxime is similar to the known formoximes I and II.¹⁷ These are formed by treating $Hg(CNO)_2$ with HI and Cl_2 ,

respectively. Compound I is stable in ethereal solution below -20 °C. Addition of a suitable base, like triethylamine, generates fulminic acid, HCNO. In our case the role of triethylamine can be taken over by AuPPh₃NO₃, which is good chloride scavenger (eq 7). AuPPh₃Cl and HNO₃ are reaction products that are

- Vollenbroek, F. A.; Bour, J. J.; van der Velden, J. W. A. Recl.: J. R. Neth. Chem. Soc. 1980, 99, 137.
 Stevens, R. E.; Gladfelter, W. L. Inorg. Chem. 1983, 22, 2034.
 Grundy, K. R.; Laing, K. R.; Roper, W. R. J. Chem. Soc., Chem.
- Commun. 1970, 1500.
- (15) Booth, G.; Chatt, J. J. Chem. Soc. 1962, 2099.
- (16)
- Kriege-Simondsen, J.; Feltham, R. D. Inorg. Chim. Acta 1983, 71, 185. Grundmann, C.; Grünanger, P. In "The Nitrile Oxides"; Springer-(17)Verlag: Berlin, 1971; pp 33-40.

Scheme V

 $AuPPh_{3}NO_{3} \xrightarrow{CO} AuPPh_{3}CI + AuPPh_{3}CNO$ $Au(PPh_{3})_{2}NO_{3} + Na[Au(CNO)_{2}] \xrightarrow{OMF} 0\%$

observed. The last step in the reaction sequence could simply be the reaction of HCNO with $AuPPh_3NO_3$ to form the final product $AuPPh_3CNO$ (eq 8). Earlier it was mentioned that the reaction

 $AuPPh_{3}NO_{3} + \frac{H}{CI} C = NOH - HCNO + AuPPh_{3}CI + HNO_{3}(7)$ $HCNO + AuPPh_{3}NO_{3} - AuPPh_{3}CNO + HNO_{3} (8)$

did not run without a trace of water. Possibly the reaction needs water only in a catalytic quantity, and because no real mechanism is given, the role of water is not apparent. The reaction schemes in CH_2Cl_2 and other solvents are combined in Scheme IV.

Identification of Fulminato Compounds. AuPPh₃CNO, which is present in only small amounts after reacting AuPPh₃NO₃ with CO in CH₂Cl₂, was detected because of its very strong infrared absorptions at 2156 and 1210 cm⁻¹. It was clear that the compound contained gold, triphenylphosphine, and an unknown ligand. Experiments with ¹⁵N-labeled AuPPh₃NO₃ showed that the vibration at 2156 cm⁻¹ shifted to 2119 cm⁻¹ (whereas the other remained unchanged), indicating the presence of nitrogen in the unknown ligand. The parent peak of the mass spectrum was peakmatched to AuPC₁₉H₁₅NO, consistent with AuPPh₃ with one carbon, nitrogen, and oxygen. The fragmentation pattern further indicated the oxygen to be situated on the outside of the unknown ligand, because it could be split off. To distinguish between the two remaining possibilities, isocyanate (-NCO) and fulminate (-CNO), AuPPh₃NCO was synthesized. Both IR and NMR spectra were totally different. Final chemical proof was obtained when the compound could also be synthesized from Au(PPh₃)₂NO₃ Scheme VI

and the explosive $Na[Au(CNO)_2]$ in good yield (Scheme V).

Safety Note: Pure $Na[Au(CNO)_2]$ explodes with a sharp bang when heated with a flame. Otherwise, the compound is fairly stable with no considerable decomposition at room temperature during 1 day. The compound did not detonate by stroke.

The crystal structures have been determined for both AuPPh₃CNO and AuPPh₃NCO.¹⁸

The fulminate vibration of $Au_{11}(PPh_3)_8(CNO)_2^+$ is found at 2135 cm⁻¹ (medium) and is somewhat broader than the fulminate absorption of AuPPh₃CNO. $Au_{11}(PPh_3)_8(CNO)_2^+$ could also be synthesized by reacting $Au_8(PPh_3)_8^{2+}$ with $Na[Au(CNO)_2]$ and by reacting $Au_8(PPh_3)_7(NO_3)_2$ with AuPPh₃CNO (Scheme VI).

Although it was possible to obtain crystals of $Au_{11}(PPh_3)_{8^-}(CNO)_2NO_3$, we were unable to perform an X-ray crystal structure determination because of twin-crystal problems.

Acknowledgment is made to the Netherlands Foundation for Chemical Research (SON) and to NATO for an exchange grant to Prof. L. H. Pignolet and Prof. J. J. Steggerda. Prof. L. H. Pignolet also acknowledges support from the National Science Foundation (Grant NSF CHE 81-08490).

Registry No. $Au_{11}(PPh_3)_8(CNO)_2NO_3$, 98921-33-6; $Au_9(PPh_3)_8(NO_3)_3$, 37336-35-9; $Au_8(PPh_3)_8(NO_3)_2$, 81283-09-2; $Au_8(PPh_3)_7(NO_3)_2$, 81283-10-5; $AuPPh_3NCO$, 24169-91-3; $AuPPh_3NO_2$, 98875-31-1; $AuPPh_3NO_3$, 14897-32-6; $AuPPh_3CNO$, 98875-32-2; $Au(PPh_3)_2NO_3$, 98875-33-3; $Na[Au(CNO)_2]$, 98875-34-4; CO, 630-08-0; H_2 , 1333-74-0; CH_2Cl_2 , 75-09-2.

(18) Submitted for publication in Inorg. Chem.